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Abstract

This paper demonstrates the potential of a solid-oxide fuel cell (SOFC) to perform functions other than the supply of real power to the grid.

These additional functions however require the use of an inverter. The flux-vector control is used very effectively for the control of this

inverter, where the space-vector pulsewidth modulation (SVM) is implemented by neural networks (NNs). The results presented in the paper

show the effect of the fuel cell on the voltage at the sensitive load point. The performance of the fuel cell was found to be excellent.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A solid-oxide fuel cell (SOFC) equipped with a pulse-

width modulation (PWM) inverter interface can be used to

palliate power quality problems. The requirement is to have

independent control over the real and reactive components

of the power injected into the ac grid. Under these condi-

tions, the distributed generator can be configured to behave

as dynamic voltage restorer (DVR). A series winding,

associated with an inverter fed from the dc bus, can be

included in the installation to inject the voltages required to

support the ac grid voltage at the point of coupling during

voltage sags and swells. These are mostly the result of

single-phase faults on adjacent feeders.

Because the response time of the inverter is <10 ms, it is

not necessary to include its detailed model in the slow

dynamic fuel cell system. It is assumed that power factor

can be adjusted accordingly by the power conditioner.

However, what must be included in the model is the direct

effect of this switching. In order to do so, the vector control

strategy proposed in [1] has been simulated. It is a system

that accepts commands in terms of real power P and reactive

power Q, and it executes them by means of several control

loops.

Space-vector pulsewidth modulation (SVM) has recently

become a very popular PWM method for voltage-fed con-

verter ac machine drives because of its superior harmonic

quality and extended linear range of operation. However, one

difficulty of SVM is that it requires complex online compu-

tation that usually limits its operation up to several kilohertz

of switching frequency. Of course, switching frequency can

be extended by using a high-speed DSP and simplified

algorithms including lookup tables. Lookup tables, unless

very large, tend to reduce pulsewidth resolution.

In this paper, the SVM have been implemented by neural

networks (NNs). Neural networks, in general, are showing

very high promise for simplification of control and feedback

signal processing [2–4].

The paper is structured as follows. Section 2 presents a

review of the fuel cell model. Some basic concepts of the

inverter control are presented in Section 3. Section 4

describes the architecture of NNs. Section 5 depicts some

simulation results. Finally, conclusions are presented in

Section 6.

2. Fuel cell model

There are several types of fuel cells being developed for a

variety of applications [5,6] and these have been extensively

discussed in the open literature. Unlike other variants, the

SOFC is entirely solid state with no liquid components.

Operation at elevated temperature is needed to achieve the

necessary level of conductivity in the cell’s solid electrolyte

for it to operate efficiently. With an outlet temperature in the

range of 900–1000 8C, the efficiency of the cell alone is

about 50%.
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Typically, the fuel cell system consists of SOFC generator

modules in a parallel flow arrangement, with the number of

standard modules being determined by the plant power

requirement. The SOFC generator module embodies a

number of tubular cells, which are combined to form cell

bundle rows, several of which are arranged side by side to

make up the complete assembly.

The high efficiency of the system means that less carbon

dioxide is generated than in contemporary power plants.

In addition, the fuel is oxidized electrochemically without

any interaction with atmospheric nitrogen so negligible

amounts of nitrogen oxide are discharged to the environ-

ment.

Models for simulating fuel cell based plants have been

developed by Bessette [7], Haynes [8], Padullés [9], Mas-

sardo [10], Campanari [11], and Rao [12].

This paper provides a basic SOFC power section dynamic

model used for performance analysis during normal opera-

tion. Some control strategies of the fuel cell system,

response functions of fuel processor and power section

are combined to model the SOFC power generation system.

The chemical response in the fuel processor is usually

slow. It is associated with the time to change the chemical

reaction parameters after a change in the flow of reactants.

This dynamic response function is modeled as a first-order

transfer function with a 5 s time constant.

The electrical response time in the fuel cells is generally

fast and mainly associated with the speed at which the

chemical reaction is capable of restoring the charge that

has been drained by the load. This dynamic response func-

tion is also modeled as a first-order transfer function but with

a 0.8 s time constant.

With aid of the power conditioner, the fuel cell system can

supply not only real power but also reactive power. Usually,

power factor can be in the range of 0.8–1.0. The SOFC

system dynamic model is given in Fig. 1.

3. Utility-connected inverter control

Essentially, inverter flux-vector control involves appro-

priately choosing the inverter voltage vectors, so as to make

the flux follow a reference flux-vector within a specified

tolerance band.

Because the modulator does not directly control the load,

the response of the load quantities is not as fast. However,

the advantage here is that it does lead to a general-purpose

modulator whose task is to control the inverter flux-vector to

whatever value is specified by the outer control loop. The

outer control loop can then be designed independently to

generate the inverter flux-vector set point for achieving the

desired final result.

Inverter flux-vector control can be used very effectively

for the control of inverters which have their outputs con-

nected to the main utility system. This section describes the

flux control of a three-phase inverter connected to the utility

system through a sine-wave output filter. The control system

for the inverter is given in Fig. 2.

The instantaneous position of the rotating q–d reference

frame axes is determined relative to the utility mains voltage,

either by the use of a phase-locked loop (PLL) or by the use

of a power–frequency droop characteristic as in [1]. In either

case, in the steady state, the q–d frame angular frequency

Nomenclature

Fuel cell

E0 ideal standard potential

F Faraday’s constant

Ifc fuel cell current

KH2
valve molar constant for hydrogen

KH2O valve molar constant for water

KO2
valve molar constant for oxygen

Kr constant, Kr ¼ N0/4F

N0 number of cells in series in the stack

pi partial pressure

P real power

P� set point for the real power

qin
fc input fuel flow

qr
fc fuel flow that reacts

r ohmic loss

rH�O ratio of hydrogen to oxygen

R universal gas constant

T absolute temperature

Te electrical response time

Tf fuel processor response time

Uopt optimal fuel utilization

Vfc fuel cell voltage

tH2
response time for hydrogen flow

tH2O response time for water flow

tO2
response time for oxygen flow

Inverter

E load bus voltage

E� set point for the load bus voltage

Q reactive power

Q� set point for the reactive power

V inverter output voltage space-vector

dp angle between cv and ce

d�p angle reference

ce flux-vector associated with E
cv flux-vector associated with V
c�

v flux-vector reference

Neural networks

fso switching frequency

f(c�
v) voltage magnitude function

g(a�) pulsewitdh function of a phase at unit voltage

amplitude

TA-on turn-on time of the phase A

Ts sampling time, Ts ¼ 1/fso
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equals the mains frequency, and its position relative to the

mains voltage determines the sharing of the total load power

between the inverter and the utility mains.

The inverter controller is required to align the filtered

output voltage vector E with the rotating q axis of the

reference frame. The inverter flux-vector cv can be used

as a very effective forcing quantity to achieve this.

Further, being a continuous quantity, it is very convenient

to use the flux-vector to define the power angle, which

essentially determines the flow of real power from the

inverter to the load bus. In Fig. 3, this is the angle between

the vectors cv and ce, where ce is the flux-vector associated

with the load bus voltage E.

The inverter flux-vector cv is the forcing quantity, used to

align the filtered voltage vector with the rotating axis, and

ensure that it has the desired magnitude.

To force the filtered voltage vector E to assume the desired

value E�, the inverter flux-vector reference c�
v can be

generated by a proportional–integral (PI) controller acting

on the voltage vector error e ¼ E� � E, in the rotating

reference frame:

c�
v ¼ kpeþ ki

Z
e dt (1)

In this equation, the complex constants kp and ki are the gains

of the rotating frame vector PI controller.

For the purpose of controller design, it is assumed that the

inverter, as controlled by the flux modulator, is capable of

producing the commanded flux-vector at its output with

negligible delay. That is, the assumption that cv ¼ c�
v is

always valid.

4. Neural networks

Most real life physical systems are actually non-linear

systems. The NN is an universal estimator. This implies that

the NN can be trained to approximate any smooth non-linear

function with accuracy. The ability of NNs to approximate

non-linear functions relating input–output data from a non-

linear system explains the increasing attention that they are

attracting as candidates for novel control systems.

The PWM controller receives the c�
v and d�p signals at the

input and translates to gate drive signals for the insulated

gate bipolar transistor (IGBT) inverter. The terminal vol-

tages and currents are sensed, filtered by low-pass filters.

Fig. 4 shows the topology of the neural-network-based

SVM. It receives the c�
v and d�p signals at the input and

generates symmetrical pulses for three phases at the output,

as shown in the figure.

Basically, the network consists of two subnets: the mag-

nitude subnet (shown in the upper part) which implements

Fig. 1. SOFC system dynamic model.

F. Jurado / Journal of Power Sources 117 (2003) 75–83 77



the function f(c�
v) which is linear in the undermodulation

region but nonlinear in the overmodulation region; and the

angle subnet implements the pulsewidth function g(a�) for

the three phases at phase shift angles of 2p/3 [13,14]. Note

that the sigmoidal activation functions of the angle subnet

generate only unipolar outputs, and these are converted to

bipolar outputs by adding a fixed bias in the denormalization

process. The digital words corresponding to turn-on time

(Ton) of the phase A can be expressed as:

TA�on ¼ f ðc�
vÞgAða�Þ þ 1

4
Ts (2)

For the symmetrical pulsewidth of each phase, the turn-off

time can be given in the form:

Toff ¼ Ts � Ton (3)

The training data were generated by simulation of a con-

ventional SVM algorithm, and then a backpropagation

technique in the MATLAB-based Neural Network Toolbox

[15] was used for offline training. In the NN-based SVM

technique, the digital words corresponding to turn-on time

are generated by the network and then converted to pulse-

widths by a single timer.

5. Results

Fig. 5 shows the test system used to carry out the various

simulations. The majority of data for the fuel cell model has

been extracted from [16,17], and a commercial leaflet

describing a SOFC 100 kW plant.

The total simulation period is 0.5 s. Using the facilities

available in MATLAB, the fuel cell plant is simulated to be

in operation, as it is expected to be the case in a practical

Fig. 2. Control system for the inverter.

Fig. 3. Flux-vector diagram of inverter.

78 F. Jurado / Journal of Power Sources 117 (2003) 75–83



situation. The results for the simulations are shown in

Figs. 6–11.

In each figure, the first simulation contains no fuel cell

plant. The second simulation is carried out using the same

scenario as above, but now with the fuel cell plant in

operation.

Different transformer winding connections between the

fault location and load terminal will cause different sags at

Fig. 4. Topology of neural-network-based SVM modulator.

Fig. 5. Test system implemented in MATLAB to carry out the simulations.
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the load terminal due to imbalanced faults. Transformers

with winding connections of D/Y, Y/D will result in the same

sag at the load terminal. This consists of a large voltage drop

on two phases and a relatively small drop on the third phase.

The transformer winding connections between the point

of the fault and the equipment terminals swap the three-

phase voltages in case of an imbalanced sag.

Most of the faults on the utility transmission and

distribution systems are single line-to-ground faults

(SLGFs). An SLGF on the primary side of a D/Y or Y/D
transformer will change into a phase-to-phase fault on

the secondary side [18]. Fig. 6 shows the phase voltage

at the sensitive load point, due to an SLGF of 18 cycles on

phase A.

Fig. 6. Phase voltage at the sensitive load point in Fig. 5 due to an SLGF.

Fig. 7. Phase voltage at the sensitive load point in Fig. 5 due to an LLF on phase A.
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Line-to-line faults (LLFs) on the primary side of the

transformer cause similar types of sag as SLGFs, but with

lower voltage magnitude at the load terminal.

One of the phase voltages drops almost to zero, while the

other two phase voltages drop to around 60% of prefault

voltage, as shown in Figs. 7 and 8. The fault is placed

between lines B and C.

Fig. 9 depicts the voltage sag on phase A at the sensitive

load point in Fig. 5 due to a three-phase fault of 300 ms

duration. The voltage sag at the load point is 50% with

respect to the reference voltage.

Fig. 10 shows the voltage sag on phase A in Fig. 5 due

to a three-phase fault of 200 ms duration, and induction

motors of 60%. Fig. 11 depicts the voltage sag and induction

Fig. 8. Phase voltage at the sensitive load point in Fig. 5 due to an LLF on phase B.

Fig. 9. Phase voltage at the sensitive load point in Fig. 5 due to a three-phase fault.
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motors of 65%. These figures show the influence of

induction motors on the shape and the duration of voltage

sags.

Since it is a balanced fault, voltages in three phases are,

therefore, the same, and phases B and C are not shown here.

The voltage sag consists of a severe during-fault sag, directly

due to the fault; and a less severe post-fault sag with longer

duration, due to the induction motor reacceleration. The

during-fault sag decays to zero in a few cycles.

An induction motor generally slows down, with energy

being returned to the supply under generator action, during a

fault. It simply operates as a generator for a short period and

causes a decrease in sag. However, its reacceleration after

fault clearance results in an extended post-fault [19].

Fig. 10. Phase voltage at the sensitive load point in Fig. 5 due to a three-phase fault. Induction motors of 60%.

Fig. 11. Phase voltage at the sensitive load point in Fig. 5 due to a three-phase fault. Induction motors of 65%.
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6. Conclusions

Conventional design approaches use different approxima-

tion methods to handle non-linearity. Some typical choices

are, linear, piecewise linear, and lookup table approxima-

tions.

A linear approximation technique is relatively simple,

however it tends to limit control performance and may be

costly to implement in certain applications. A piecewise

linear technique works better, although it is tedious to

implement because it often requires the design of several

linear controllers. A lookup table technique may help

improve control performance, but it is difficult to debug

and tune. Furthermore in complex systems where multiple

inputs exist, a lookup table may be impractical or very costly

to implement due to its large memory requirements.

Therefore, in this paper a non-linear controller is more

suitable than the linear type since the SOFC equipped with a

PWM inverter interface is truly a non-linear system.

Neural-network-based control can offer a superior per-

formance and a better trade-off between system robustness

and sensitivity, which results into handling non-linear con-

trol better than traditional methods.

This paper discusses the potential of fuel cell plants for

enhancement of power quality. In particular, fuel cell plants

can serve locally as voltage support of the ac bus.

Voltage sag is a significant disturbance, which may lead to

tripping and high cost to sensitive customers. When the fuel

cell plant is in operation the voltage sag is mitigated almost

completely, and the voltage at the sensitive load point is

maintained, as demonstrated by the examples given in this

paper.
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